
Secured Remote Client Authentication using
Elliptic Curve Cryptography Algorithm

Lakshmanarao Battula#1, Dr.P.Vamsikrishna raja*2

1 Asst.Professor, 2 Professor,
1,2Dept of Computer Science and Engineering, Kakinada Institute of Technology & Sciences.,

Divili, Peddapuram (M), E.G.DT., AP,India

Abstract— the effectiveness of remote client-
authentication schemes varies significantly in relation to
today’s security challenges, which include phishing,
man-in-the-middle Attacks and malicious software. A
survey of remote authentication methods shows how
each measure up and includes recommendations for
solution developers and consumers.

INTRODUCTION

In today’s world of distributed data sources and Web
services, the need for remote authentication is ubiquitous.
By “remote,” we mean any infrastructure in which client
and server are connected via some potentially insecure
network—are it the Internet or a data connection using
short-message service (SMS). Internet banking might be the
prime example; with it comes the added challenge of a user
base that’s not necessarily technically savvy. Ease of use
and high resilience against accidental misuse are thus of
particular importance.
So far, researchers have proposed many remote
authentication methods, including simple passwords,
public-key infrastructures (PKIs), biometrics running on
desktop PCs, smart cards, and mobile phones. Each has a
reason to exist, depending on the design criteria for the
overall usage scheme. The challenge therefore has become
less one of inventing a working scheme, and more of
deciding which scheme to choose given the design criteria.
In this article, we assume that developers are addressing
security as the foremost concern. Security can, however,
conflict with business or Usability goals. It might be
acceptable, for example, to deploy password-based
authentication solutions when developers are more
concerned with cost and minimal user training and support
than with the threat of improper authentication.

Existing system
The security challenges is to use a security device with a
display and embedded keypad that maintains a secure end
to end connection with the server, by this it protects against
various malicious software attacks.

Proposed System
The proposed system is provide a PKI based remote
authentication scheme by this server usually stores either
copies of the certificates or corresponding hash values that
it can authenticate.

 Although still widely used, scratch lists are no
longer state of the art as they can’t withstand
phishing and malicious software attacks.

 Challenge/response one-time codes or PKI-based
schemes, combined with a secure device, should
be the basis for any authentication solution.

 Because MITM attacks are increasing, developers
should build solutions with a clear vision of how
they might be extended to thwart MITM attacks.

Remote authentication schemes
Any remote authentication method’s goal is to establish and
secure an authenticated information channel by proving a
user’s identity through an associated security channel. For
most methods, the information channel also serves as the
security channel and—unless we state otherwise—we
assume this is the case in our discussion. Terminology-
wise, we also assume that it’s always the client who
connects to and authenticates with a server.

Static passwords
The oldest, most primitive remote authentication method is
the use of static passwords, which typically change—at
most—only every few months. With this method, a client
presents a single static password to the server for each
authentication; the server then matches it with the password
stored for that client. Static passwords are still widely used
in application domains where the environment is well
controlled, the protected values are limited, or the potential
risks are manageable. Example domains include
authenticating a user locally with his or her personal
computer (PC); remote authentication within local-area
networks or intranets; or access control to an Internet
bookstore. However, when it comes to highly sensitive
data— such as information about financial institutions, their
customers, and their transactions—researchers today deem
static passwords an insufficient remote authentication
method.1 we therefore exclude this approach from our
discussion.

One-time codes
Remote authentication with one-time codes is based on the
idea that both client and server share a secret. The client
presents it to the server either as is (that is, the secret is the
one-time code) or in a derived form according to some
algorithm, possibly with additional data also known to the
server. (An exception here is with systems based on one-

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5334

way hash functions—such as the S/KEY system.2 in these
systems, rather than use a shared secret, the server
authenticates the next code in a sequence based on the
previous code.) In the One-time code approach, clients
present each code to the server only once; codes can’t be
reused.

Scratch lists. A scratch list is the simplest form of a one-
time code. A scratch list is typically given to the client
once, in paper form, and usually contains about 40 to 100
codes. The server knows these codes, and clients use them
sequentially or in an indexed form. So, the shared secret is
the listed code and clients use it as is, without further
derivation. If the client uses an indexed scratch list, the
server decides which one-time code should be used next by
specifying its index in the list; otherwise, clients typically
have to track the used codes themselves. Either way, each
code is used once and only once, and the server
automatically sends the client a new list when only a certain
number of codes are left. Figure 1a illustrates a scratch list
scenario.

Short-time codes. With short-time codes, both client and
server share one or more secrets exchanged in advance.
They might, for example, use a symmetric key and derive
one-time codes for authentication based on these shared
secrets and the current time. They never actually exchange
the shared secrets; just the codes derived via some
derivation function f(x) (see Figure 1b). Time granularity is
typically on the order of a few Minutes—that is, the same
code is derived during that time. This permits small time
shifts between the client and server, and the server also
usually accepts codes derived from times within the
previous and next time slots.

Challenge/response codes. As Figure 1c shows,
Challenge/response codes modify the short-time code
concept by substituting a server-specified challenge for the
current time. That is, client and server are again initially
equipped with one or more shared secrets, such as a
symmetric key and a counter value that’s incremented after
each authentication attempt. Then, for authentication, the
server presents a randomly chosen challenge to the client.
The client then responds with a code derived from the
shared secrets and the challenge, while the server performs
the same derivation; the counter value thereby prevents
identical responses to the same challenge. Although there’s
no time-shift problem with this approach, the client can still
inadvertently calculate response codes, potentially
misaligning some secrets shared with the server. Equally,
the server might be accidentally or intentionally triggered to
send out challenges and calculate response codes, which
again misaligns shared client-server secrets. Given this, the
server typically doesn’t accept one and only one response
code; it also accepts codes neighboring the target code up to
a certain limit (such as the five previous and following
ones). If it detects a match, the server realigns its shared
secrets accordingly. Alternatively, the server might send the
challenge via a separate security channel that’s
authenticated by some other means (such as an SMS

communication secured via the mobile phone network).
Thus, the identity function can derive the response and no
shared secrets are required. In this case, the resulting
authentication’s strength is inherited from the selected
security channel.

PKI-based authentication
In contrast to one-time codes, authentication based on
public-key cryptography doesn’t rely on shared secrets. 3
Instead, each client is initially equipped with a private key
(never to be exposed) and a matching public key.
Furthermore, the server uses a PKI that issues a digital
certificate to bind the client’s identity to his or her public
key. The certificate contains the client’s public key, which
is signed by one or more certificate Agency (CA) that the
server trusts.

Figure 1. Remote authentication schemes. There are
currently four primary approaches to advanced security: (a)
a scratch list scenario, (b) short-time codes, (c)
challenge/response codes, and (d) public-key infrastructure
(PKI) authentication.

Although it’s somewhat difficult to establish and maintain a
PKI, the authentication itself is rather simple. The server
presents a randomly chosen challenge and the client signs
with its private key. (If both parties fail to use necessary
safeguards to prevent well-known crypto-analytic attacks,
such as the chosen-plaintext attack, however, then the
authentication scheme can be broken.) As Figure 1d shows,
both the signed challenge and the client’s certificate are
then returned to the server in response. The server
thereupon ensures that: the client’s certificate is valid (that
is, it’s signed by a trusted CA and the signature verifies),
and the signature of the challenge verifies with the given
client certificate. The server also maintains a list of revoked
client certificates (CRLs) in case, for example, a client’s
private key is compromised and must be invalidated.
During authentication, the server checks each client-
presented certificate against the CRL and if it finds a match,

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5335

it denies the authentication. For a positive test, or if more
than one server uses the same CA without necessarily
authenticating the same group of clients, the server usually
stores either copies of the certificates or corresponding hash
values that it can authenticate. Furthermore, each
certificate’s lifetime is usually limited from a couple of
months to a couple of years, after which the server issues a
replacement certificate to the client.

ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Generation
For signing a message m by sender A, using A’s private key
dA
1. Calculate e = HASH (m), where HASH is a
cryptographic hash function, such as SHA-1
2. Select a random integer k from [1,n − 1]
3. Calculate r = x1 (mod n), where (x1, y1) = k * G. If r = 0,
go to step 2
4. Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to step 2
5. The signature is the pair (r, s)

Signature Verification
For B to authenticate A's signature, B must have A’s public
key QA
1. Verify that r and s are integers in [1,n − 1]. If not, the
signature is invalid
2. Calculate e = HASH (m), where HASH is the same
function used in the signature generation
3. Calculate w = s −1 (mod n)
4. Calculate u1 = ew (mod n) and u2 = rw (mod n)
5. Calculate (x1, y1) = u1G + u2QA
6. The signature is valid if x1 = r(mod n), invalid otherwise

Biometrics
Biometrics base remote authentication on “being
something” instead of “knowing something” (such as a
onetime code) or “having something” (such as a private
key). In biometrics, the server matches one or more client
biometric—such as a fingerprint, facial feature, iris pattern,
or hand geometry—with the same information previously
stored at the server during enrollment. During the
enrollment process, the serving organization captures and
stores each client’s biometric information under well-
controlled conditions. Then, for authentication, the client
again captures that information and sends it and the claimed
identity to the server for matching. The servers can thus
reliably authentic clients given three assumptions. That is,
that biometric information.

 can be reproducibly captured repeatedly,
 cannot be easily faked, and
 is sufficiently different between any two clients.

Unfortunately, clients can’t capture biometric information
reproducibly, but rather only in close approximation. A
biometric match never returns a clear-cut yes or no result—
it returns only a probability as to the verifiability of the
client’s identity. This coercively causes so-called “false
rejects” (genuine clients aren’t authenticated) and “false
accepts” (im-poster are authenticated). Although developers
can move a threshold to adjust the tendency as to which

side a method will err on and with what probability, each
biometric authentication is inherently prone to this type of
misjudgment.
A significant drawback here is that it’s possible to obtain
some biometric properties, such as after physical contact
(fingerprint on a water glass, for example) or by using a
high-resolution picture of a person’s eyes. This limits
biometrics’ value in scenarios where forgery of this type—
say, plastic fingers or photographs presented during the
authentication phase—are undetectab le. Also, like static
passwords, clients can use biometric features repeatedly
once they’re obtained.
To prevent such misuse, we’d have to authenticate the
biometric device used to capture the biometrics to ensure
the authentication data’s origin.4 This would introduce a
whole new complexity level, making biometrics of limited
value for remote authentication over insecure networks.

Client security devices
The most common client hardware is a standard desktopPC,
which is also an easy platform to attack. People thus often
additionally use a security device, such as a smart card
(either in a standalone reader or one that connects to the
PC), a mobile phone or PDA, or a smart memory stick. The
security device’s software then (at least partially) performs
the authentication, preventing certain types of attacks
against the PC. As we now describe, there are currently
several commonly used client-security devices. Although
this might make the security channel distinct from the
information channel, we assume that the information
channel is always Established between a client’s PC and the
server.

Smart cards
A smart card consists of a plastic card with a small
embedded Microprocessor with various memory types
(such as ROM, RAM, and Eeprom) and tamper- resistant
properties (such as secure crypto-coprocessors for
symmetric and public-key cryptography). Typically, smart
cards have external power and clock, and communication is
serial (contact-based or contactless). To communicate with
the smart card, users need a reader that connects it with
either a PC or standalone device. Standalone readers
typically have at least a small display and a numeric keypad
where users enter their PIN and commands. Readers
providing a PC connection are commonly classified
according to their capabilities, with class 1 readers simply
providing connection, class 2 adding a pin pad, and class 3
readers offering a display and some programming
capabilities.
Class 4 readers feature a separate security module and a
virtual machine for custom application execution; we thus
consider them secure execution platforms.
Given their resistance to tampering, smart cards are
generally accepted as sufficiently secure to store sensitive
data, particularly private keys. Ideally, private keys are
generated on the smart card and are never directly exposed
to the outside world.

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5336

Mobile phones and PDAs
Mobile phones or personal digital assistants (PDAs) are
separate computing platforms with their own displays and
keypads. Both can serve either as standalone devices (for
storing and computing one-time codes, for example) or as a
PC connection using Bluetooth, infrared, or USB to
remotely authenticate users. Mobile phones also can use
their mobile networks as security channels. Functionality-
wise, mobile phones are increasingly general-purpose
computing platforms that support more or less open
software execution platforms. By far the most prevalent
code execution platform is Sun’s Java, which is used in
millions of phones. Downloading and installing Java
applications is simple; vendors have a huge commercial
interest in making any software purchase (such as games)
easy for mobile phone users. All versions of J2ME—the
stripped-down “embedded” Java version run in mobile
phones—lack desktop and enterprise Java security features
such as the byte-code verifier, which performs static code
and integrity checks.5 Without this on-device verifier,
attackers can write “subversive” code and thereby access
the data of other Java code—such as a banking
application— residing on the same mobile phone. Only the
most recent J2ME version (MIDP 2.0) includes the
possibility of digitally signing code and thus tying code
executed on the device to a trusted source that presumably
performs proper off-device byte-code verification. Only
devices that conform to this specification level meet the
recommendation to only run code of known origin. It’s
highly dubious, however, that we’ll be able to educate
typical users enough to verify that a piece of code’s digital
signature refers to a trusted source. The underlying issue of
checking certificate origin—that is, checking SSL
certificates to avoid man-in-the-middle (MITM) attacks—
has already proven intractable in PC-based online banking.
Java’s prevalence, combined with a nonexistent or difficult-
to-verify code-origin check and a weak code security
model, makes mobile phones far weaker than PCs when it
comes to security. Storing secret information (such as
private keys) to support banking applications on a mobile
phone that lacks a security module—that is, one that uses
soft tokens, or software only authentication
implementations—is, in our opinion, far too dangerous and
users should not even
Consider it. Instead, they should use a smart card as a
tamper-resistant security module. Nearly all mobile phones
have security interface modules (SIM), which are smart
cards that, among other things, authenticate the mobile
phone with the mobile network provider. Network operators
can deploy additional applications on these SIMs, which
can use the mobile phone network as a security channel.
The new generation of mobile phones also has a second
smart card that offers secure storage for applications
running on the phone’s runtime platform. The card also
provides a runtime platform for secure applications. These
new phones can connect smart cards to PCs using near-field
communication (NFC),6 a short-range contactless
communication interface and protocol based on ISO
proximity card standards.7 Although it’s convenient for
users, such direct communication between NFC-enabled

mobile phones and PCs requires them to add a contactless
reader device to their PCs. To use the second smart card
simply, that is, as a phone-based authentication with user
interaction on the phone, is similar to using the SIM. The
only difference is the chip’s availability (which is rare
compared to SIM) and accessibility (which is better than
SIM). Still, short of the phone-internal chip that drives all
external user interactions—through a SIM Application
Toolkit (SAT)8 application, for example—using a security
device helps protect only the secret data. It can’t guarantee
overall application integrity. If a user can be tricked into
providing the password to the secret data, a malicious on-
phone application can freely access the data, even if it’s
safely stored. Any application that uses a mobile phone as a
security device must account for this fact when designing
what on phone code can do with the secret information once
it’s unlocked. As an obvious example, it should be
impossible for an application to copy out this data, even if
the user presents the correct PIN code.

Smart memory sticks
Memory sticks equipped with a smart card—in, for
example, a USB form factor for use with PCs—are a rather
new development. The memory stick mounts as a write-
protected volume (like a CD) and usually contains some
immutable software for remote authentication. This
software might be a Web browser, such as Firefox, that’s
restricted to connecting only to certain Web sites. For added
convenience, users can Configure some or all of this
software to automatically Launch whenever the memory
stick is mounted. Any mutable state and any data that can’t
be exposed (such as a shared secret or a private key) are
stored and processed on the embedded smart card. One of
this technology’s main challenges is how to create user-
friendly updating of the read-only memory if, for example,
security patches require installation of a new version of the
memory stick’s software. Furthermore, not all applications
can operate from a read-only Device. As a result, they must
be temporarily copied to the PC’s hard drive prior to each
execution. In principle, smart memory sticks can work with
mobile phones—by inserting them into the secure digital
(SD) slot, for example—as of now, however, we’re not
aware of any such products.

Attacks and countermeasures
All of the methods mentioned earlier authenticate a client
with a server and are thus equivalent in terms of
functionality. However, their power to resist attacks differs
significantly. We must therefore understand the potential
attacks on a remote authentication method before choosing
one. Here, we focus on three types of attack: phishing,
malicious software, and MITM. All three are attacks against
the client, whose protection mechanisms are arguably less
sophisticated than those typically found at a server. We
don’t discuss attacks Against the server, such as denial of
service. Figure 2 offers an intentionally generic outline of
the three attack types; we don’t consider combination
attacks or further relationships between the attacker and the
client

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5337

Figure 2. Three types of attack scenarios. (a) Phishing attacks trick users
into revealing their credentials. (b) Man-in-the-middle attacks intercept
communication between client and server to modify transactions or hijack
the authenticated channel. (c) Malicious software invades PCs to
fraudulently gather user credentials.

Phishing
As Figure 2a shows, phishing combines spoofed emails and
mocked-up Web pages. An attacker, might, for example,
hijack a well-known financial institution’s trusted brand
and trick users into entering their authentication credentials
(such as a one-time code) into a faked Web form. Such
trickery is commonly achieved through emails that look
genuine if users only casually examine them; most users
don’t actually know how to reliably identify a genuine
server. Phishes reportedly convince up to 5 percent of users
receiving a spoofed email to respond and reveal their
secrets.9 Scratch lists, even indexed ones, are inherently
prone to phishing attacks because the one-time code’s
validity period is itself rather long (or even unlimited).
Also, the code isn’t specifically connected with a particular
information channel. So, when attackers get a one-time
code from a scratch list, they can use it with any
information channel to the genuine server any time after an
attack and prior to the legitimate user’s next attempt to
authenticate with that server. Biometric authentication is
also conceptually vulnerable to phishing attacks for the
same reasons. To make it more difficult for phishes to
obtain secret Information stored on a mobile phone’s
security module, it might help to authenticate not just the
user, but also the backend system to the secret data
container. Also, the secret data container is unaware of the
current time. By reliably provisioning it with the current
time, we might prevent repeated/recurrent use of the secret
data without the container’s knowledge, and also possibly
have it shut down if it becomes aware of an attack. In
contrast, short-time codes at least limit an attacker’s
window of opportunity to a couple of minutes. Still, only
challenge/response authentication effectively prevents
phishing by strictly associating each response to a specific
authentication attempt. Applying this line of reasoning,
PKI-based authentication methods also prevent phishing
attacks. In fact, we can consider the server challenge’s
digital signature as a response, much like a one-time code
challenge/ response scheme, though the latter usually
employ a simpler infrastructure than PKI.

Man in the middle
The infamous MITM is a network attack. Rather than trying
to obtain a user’s authentication credentials, the attacker
covertly intercepts messages between the client and server,
masquerading as the server to the client and as the client to
server, respectively (see Figure 2b). Although virtually all
of today’s servers are authenticated via a public-key
certificate when users establish an SSL/TLS session, users
often naively ignore warning messages about invalid or
untrusted certificates. This lets attackers hijack an
authenticated information channel or silently modify
transaction data. In contrast to phishing, however, an
MITM attack doesn’t necessarily compromise a user’s
credentials.
On the protocol level, the SSL/TLS protocol’s client-
authentication option can render MITM attacks impossible.
Unfortunately, the SSL/TLS protocol doesn’t support one-
time code schemes for client authentication (although
researchers have made a proposal in that direction10). On
the application level, MITM attacks can be prevented only
by challenge/ response one-time codes or PKI-based
authentication methods—if both are extended to this end.
To exclude an MITM, the client and server must uniquely
Identify the information channel, and then
 use this identification as an additional input parameter

when calculating the one-time code response, or
 Concatenate it with the data to be digitally signed.
The client and server could, for example, use the session-
specific SSL/TLS protocol information—such as the
handshake message’s hash value—to identify the
information channel. Such information would be different
for client and server if, instead of one end to- end session,
they had two sessions with an MITM. Consequently, either
the client’s one-time code response or the signed data
wouldn’t match, respectively. If the session identification is
independent of the SSL/TLS connection—as in the use of
cookies, for example—the session has no MITM
resistance.11 all other remote authentication methods we
discuss here are prone to MITM attacks. Unfortunately,
recent research shows that while online services are
becoming more resistant to phishing attacks—such as by
moving from scratch lists to short-time password-
generating hardware tokens—MITM attacks are
increasing.12
Malicious software
Malicious software aims to fraudulently gather
authentication Credentials by invading an insufficiently
protected client PC by means of a virus or a Trojan horse
(see Figure 2c). For example, once established, a Trojan
horse could read and forward a private key stored on the
PC’s hard drive while monitoring keyboard activity to
access the pass phrase used to decrypt the private key.
Users can protect themselves against malicious software
using security precautions—such as installing and
maintaining a firewall and regularly updating antivirus
software; applying OS and browser patches as needed; and
configuring software appropriately—but few users strictly
adhere to such procedures.
Considering most users’ lack of attention to securing their
PCs, server providers increasingly classify PCs as a

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5338

generally insecure client platform and refrain from using
any soft tokens. This is why smart cards play an
increasingly important security role: they not only store a
client’s credentials, but also perform any necessary
computations.
A first step is a smart card directly connected to a PC by a
class 1 reader. When the smart card runs a scheme to
generate challenge/response one-time codes or a PKI-based
authentication method, a client’s credentials are no longer
plainly available to malicious software. Even if a virus or
Trojan horse obtains thesmart card’s PIN via a keyboard
logger, it can still trigger only the client PC’s authentication
method, rather than grab the credentials and use them on
any PC.
Developers can achieve higher security by connecting the
smart card to the PC using a class 3 or 4 reader, or a
Bluetooth/NFC-connected mobile phone. This prevents
malicious software from opening the smart card by itself
and restricts it to triggering the authentication method once
the user has entered the PIN. If each authentication method
invocation requires some further user interaction on the
reader, it becomes even harder because users must be
tricked into explicitly accepting a remote authentication.
Similarly, developers could use a reader to display
application-related Information and authorize
transactions.13
If both challenge and response can be easily transferred
manually from one device to another, users can get a
standalone device that totally eliminates malicious software
attacks. Such a device can generate short-time codes, for
example, and show them on a small display so the reader
can view the code and enter it into a server Web form. If the
standalone device has a keypad, it can generate
challenge/response one-time codes and users can manually
transfer both challenge and response between the device
and their PCs. A keypad also lets users protect the device
itself using a PIN, which renders it useless if lost. If the
standalone device—such as a mobile phone—has network
connectivity and can receive short messages, users can
leverage this into a separate security channel and have the
server send individual one-time authentication codes on
demand. However, in such cases, the security channel’s
properties should be thoroughly evaluated. For example,
with SMS communication, users must consider that
messages can be delayed or lost, network operators can
trace them, and a phone without PIN protection might be
stolen.
In contrast to the one-time code approach, PKIbased
authentication methods are slightly more difficult to
implement on a standalone device. Manually transferring a
digital signature from the device to a Web form is anything
but practical. When combined with a mobile phone,
however, users can separate the security and information
channels. That is, the mobile phone network first sends a
challenge to a client’s mobile phone running the
authentication software via SMS, for example. Next, users
enter some authorization code into the mobile phone. The
server might, for example, send that authorization code to
the client via the information channel, thereby connecting it
with the digital signature.14 finally, the PKI-enabled

mobile phone sends the digital signature back to the server
using the mobile phone network.

CONCLUSION
 Although still widely used, scratch lists are no longer

State of the art as they can’t withstand phishing and
malicious software attacks.

 Challenge/response one-time codes or PKI-based
Schemes, combined with a secure device, should be
the basis for any authentication solution.

 Because MITM attacks are increasing,12 developers
Should build solutions with a clear vision of how They
might be extended to thwart MITM attacks.

REFERENCES

1. B. Schneier, “Two-Factor Authentication: Too Little, Too Late,”
Comm. ACM, vol. 48, no. 4, 2005, p. 136.

2. L. Lamport, “Password Authentication with Insecure
Communication,” Comm. ACM, vol. 24, no. 11, 1981, pp. 770–772.

3. R.E. Smith, Authentication: From Passwords to Public Keys,
Addison-Wesley, 2002.

4. U. Waldmann et al., “Protected Transmission of Biometric User
Authentication Data for Oncard- Matching,” .Proc. ACM Symp.
Applied Computing, ACM Press, 2004, pp. 425–430.

5. X. Leroy, “Java Bytecode Verification: Algorithms and
Formalizations,” J. Automated Reasoning, vol. 30, nos. 3-4, 2003,
pp. 235–269.

6. The Keys to Truly Interoperable Communications, Near Field
Communication Forum, 2007; www.nfc-forum.
Org/resources/white_papers/nfc_forum_marketing _white_paper.pdf.

7. Proximity Integrated Circuit Cards (PICCs), ISO/IEC 14443, parts
1-4, http://wg8.de/sd1.html#14443.

8. Specification of the SIM Application Toolkit (SAT), 3GPP Standard
TS 11.14 v. 8.5.0, www.3gpp.org/ftp/Specs/
archive/11_series/11.14/1114-850.zip.

9. Report on Phishing, Binational Working Group on Cross-Border
Mass Marketing Fraud, US Department of Justice & Ministry on
PublicSafety,Oct. 2006, www.usdoj.gov/opa/report_on_phishing.pdf.

10. M. Steiner et al, “Secure Password-Based Cipher Suite for TLS,”
ACM Trans., vol. 4, no. 2, 2001, pp. 134–157.

11. K. Fu et al., “Dos and Don’ts of Client Authentication on the Web,”
Proc. Usenix Security Forum, Usenix Assoc., 2001, pp. 251–268.

12. Semi-Annual Report, Federal Office of Police, Swiss Reporting and
Analysis Centre for Information Assurance (MELANI), 2007;
www.melani.admin.ch/
dokumentation/00123/00124/01029/index.html? lang=en.

13. T. Weigold et al., “The Zurich Trusted Information Channel—An
Efficient Defence against Man-in-the- Middle and Malicious
Software Attacks,” P. Lipp, A.R. Sadeghi, and K.M. Koch, eds.,
Proc. Trust Conf. (Trust 2008), LNCS 4968, Springer-Verlag, 2008,
pp. 75–91.

14. The WPKI Non-Profit Association, WPKI Main Specification, v. 2.0,
March 2006; www.wpki.net/files/WPK
I%20Main%20Specification%202.0.pdf.

15. R. Thompson, “Why Spyware Poses Multiple Threats to Security,”
Comm. ACM, vol. 48, no. 8, 2005, pp. 41–43.

16. US-Cert: Quarterly Trends and Analysis Report, vol. 2, no. 2, U.S.
Computer Emergency Readiness Team, June 2007; www.us-
cert.gov/press_room/trendsandanalysis Q207.pdf

17. Korea Phishing Activity Trends Report, Korea Internet Security
Center, Mar. 2007; www.krcert.or.kr/english
_www/publication/8_1_publication_list.jsp?board Type=PUB.

18. R. Dhamija et al., “Why Phishing Works,” Proc. Conf. Human
Factors in Computing Systems (CHI), ACM Press, 2006, pp. 581–
590.

19. A. Hiltgen et al., “Secure Internet Banking Authentication,” IEEE
Security & Privacy, vol. 4, no. 2, 2006, pp. 21–29.

20. F. Puente et al., “Improving Online Banking Security with Hardware
Devices,” Proc. 39th Int’l Carnahan Conf. on Security Technology
(CCST), IEEE Press, p. 174–177.

Lakshmanarao Battula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5334-5339

www.ijcsit.com 5339

